References

Alcaraz A, Hammerer P, Tubaro A, Schroder FH, Castro R (2009) Is there evidence of a relation-

ship between benign prostatic hyperplasia and prostate cancer? Findings of a literature review.

Eur Urol 55:864873. https://doi.org/10.1016/j.eururo.2008.11.011

Anglin IE, Glassman DT, Kyprianou N (2002) Induction of prostate apoptosis by alpha1-

adrenoceptor antagonists: mechanistic signicance of the quinazoline component. Prostate

Cancer Prostatic Dis 5:8895. https://doi.org/10.1038/sj.pcan.4500561

Benning CM, Kyprianou N (2002) Quinazoline-derived alpha1-adrenoceptor antagonists induce

prostate cancer cell apoptosis via an alpha1-adrenoceptor-independent action. Cancer Res 62:

597602

Bostwick DG, Cooner WH, Denis L, Jones GW, Scardino PT, Murphy GP (1992) The association

of benign prostatic hyperplasia and cancer of the prostate. Cancer 70:291301. https://doi.org/

10.1002/1097-0142(19920701)70:1+<291::aid-cncr2820701317>3.0.co;2-4

Bylund DB et al (1994) International Union of Pharmacology nomenclature of adrenoceptors.

Pharmacol Rev 46:121136

Demirci S, Hayal TB, Kiratli B, Sisli HB, Demirci S, Sahin F, Dogan A (2019) Design and

synthesis of phenylpiperazine derivatives as potent anticancer agents for prostate cancer.

Chem Biol Drug Des 94:15841595. https://doi.org/10.1111/cbdd.13575

Garrison JB, Shaw YJ, Chen CS, Kyprianou N (2007) Novel quinazoline-based compounds impair

prostate tumorigenesis by targeting tumor vascularity. Cancer Res 67:1134411352. https://doi.

org/10.1158/0008-5472.CAN-07-1662

Gronberg H (2003) Prostate cancer epidemiology. Lancet 361:859864. https://doi.org/10.1016/

S0140-6736(03)12713-4

Guo FJ, Sun J, Gao LL, Wang XY, Zhang Y, Qian SS, Zhu HL (2015) Discovery of

phenylpiperazine derivatives as IGF-1R inhibitor with potent antiproliferative properties

in vitro. Bioorg Med Chem Lett 25:10671071. https://doi.org/10.1016/j.bmcl.2015.01.011

Harris AM et al (2007) Effect of alpha1-adrenoceptor antagonist exposure on prostate cancer

incidence: an observational cohort study. J Urol 178:21762180. https://doi.org/10.1016/j.

juro.2007.06.043

Hori Y et al (2011) Naftopidil, a selective {alpha}1-adrenoceptor antagonist, suppresses human

prostate tumor growth by altering interactions between tumor cells and stroma. Cancer Prev Res

(Phila) 4:8796. https://doi.org/10.1158/1940-6207.CAPR-10-0189

Ishii K, Sugimura Y (2015) Identication of a new pharmacological activity of the phenylpiperazine

derivative naftopidil: tubulin-binding drug J. Chem Biol 8:59. https://doi.org/10.1007/s12154-

014-0122-0

Ishii K et al (2018a) Additive naftopidil treatment synergizes docetaxel-induced apoptosis in human

prostate cancer cells. J Cancer Res Clin Oncol 144:8998. https://doi.org/10.1007/s00432-017-

2536-x

Ishii K, Takahashi S, Sugimura Y, Watanabe M (2018b) Role of stromal paracrine signals in

proliferative diseases of the aging human prostate. J Clin Med 7. https://doi.org/10.3390/

jcm7040068

Iwamoto Y et al (2013) Oral naftopidil suppresses human renal-cell carcinoma by inducing G

(1) cell-cycle arrest in tumor and vascular endothelial cells. Cancer Prev Res (Phila) 6:1000

1006. https://doi.org/10.1158/1940-6207.CAPR-13-0095

Iwamoto Y et al (2017) Combination treatment with naftopidil increases the efcacy of radiother-

apy in PC-3 human prostate cancer cells. J Cancer Res Clin Oncol 143:933939. https://doi.org/

10.1007/s00432-017-2367-9

Kanda H, Ishii K, Ogura Y, Imamura T, Kanai M, Arima K, Sugimura Y (2008) Naftopidil, a

selective alpha-1 adrenoceptor antagonist, inhibits growth of human prostate cancer cells by G1

cell cycle arrest. Int J Cancer 122:444451. https://doi.org/10.1002/ijc.23095

Kawabe K (2006) Latest frontiers in pharmacotherapy for benign prostatic hyperplasia. Yakugaku

Zasshi 126:199206. https://doi.org/10.1248/yakushi.126.199

118

K. Ishii et al.